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The task of sampling is ubiquitous in ML

Obtain samples from a target distribution 7(6)

 Probabilistic inference:m(0) is a parameter distribution (e.g. the
posterior of deep neural network weights)

« Generative modeling: 7(0) is a data distribution (e.g. energy-based
models, diffusion models)

« Representation learning: m(0)is a latent variable distribution (e.g.
restricted Boltzmann machine)



Sampling beyond unconstrained continuous domains

« Sampling in unconstrained continuous domains is relatively well-
studied

« Many powerful samplers, e.g. Langevin dynamics, Hamiltonian Monte
Carlo

« However, sampling in domains with complicated structures is
challenging
« Discrete: lack of continuity; combinatorially large search space
[- Constrained: a implicitly-defined submanifold J
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Focus for today's talk




Discrete data and models

Discrete data
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Discrete models

Text

* beginning in december 1934 , training exercises were conducted for the tetrarchs and their crews using hamilcar gliders

* beginning in march 1946 , training exercises were conducted by the tetrarchs and their crews with hamilcar gliders .

* beginning in may 1926 , training exercises were conducted between the tetrarchs and their crews using hamilcar gliders .

* beginning in late 1942 , training exercises were conducted with the tetrarchs and their crews onboard hamilcar gliders .

* beginning in september 1961 , training exercises were conducted between the tetrarchs and their crews in hamilcar gliders .

A [ B [ ¢ [ b [ E [ F G
| 1 |Region Gender Style Ship Date Units Price Cost
| 2 |East Boy Tee 1/31/2005 12 11.04 10.42
| 3 |East Boy Golf 1/31/2005 12 13 126
| 4 |East Boy Fancy 1/31/20058 12 11.96 11.74
| 5 |East Girl Tee 143172005 10 11.27 10.56
| B |East Girl Golf 143172005 10 12.12 11.95
|7 |East Girl Fancy 1/31/2005 10 13.74 13.33
[ 8 |West Boy Tee 1/31/2005 1 11.44 10.94
[ 9 |West Boy Golf 1/31/2005 1 12,63 1173
|10 |West Boy Fancy 1/31/2005 1" 12.06 11.51
| 11 |West Girl Tee 1/31/20058 15 13.42 13.29
[12 [West Girl Golf 143172005 15 11.48 10,67
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[Qin et al. 2020]



Discrete Samplers

* Gibbs sampling
—
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e Gibbs with Gradients
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Only update one dim:
suffer from high-
dimensional and highly

correlated distributions!
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Oops | Took A Gradient: Scalable Sampling for Discrete Distributions. Grathwohl et al., ICML 2021



Continuous Sampler: Langevin Dynamics

« Gradients guide the sampler to efficiently explore high probability
regions

« Cheaply update all coordinates in parallel in a single step

[What is the analog of Langevin dynamics in discrete domains? ]




Our Method: Discrete Langevin Proposal

exp (— o5 [0 = 0= 5VUO)5)
Zo(0)

q(0'10) =

« Langevin proposal is applicable to any kind of spaces

= \Xhen® = R? recover the Gaussian proposal
= When®Ois a discrete domain, obtain a gradient-based discrete proposal

d
+  Coordinatewise factorization q(¢'|6) = | | ¢:(6;16)
1=1

(n! _ . l (o _ ._(6’2_‘91')2
[qz(ei\e) = Categomcal(SoftmaX(ZVU(H)z(Hi 6;) 5 ))

cheaply computed in parallel Discrete Langevin Proposal (DLP)

A Langevin-like Sampler for Discrete Distributions. Zhang et al., ICML 2022



Visualization of Discrete Langevin Proposal

q:(0;10) = Categorlcal(SoftmaX< VU(0):(0; — 0:) — S )2)>

ﬂlllll“

update all coordinates based on gradient info in parallel

Samplers: discrete unadjusted Langevin algorithm (DULA)
discrete Metropolis-adjusted Langevin algorithm (DMALA)



Convergence Analysis

Theorem (informal): The asymptotic bias of DULA's stationary
distribution is zero for log-quadratic distributions and is small for
distributions that are close to being log-quadratic



Other Variants

« With stochastic gradients

Theorem (informal): When the variance of the stochastic gradient or

the stepsize decreases, the stochastic DLP in expectation will be
closer to the full-batch DLP

« With preconditioners

(n! l (o _ ._(073_‘92)2
q;(0;10) < exp <2VU(9)@(97; 6;) a0,
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Experiments: Restricted Boltzmann Machines
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« DULA and DMALA converge faster to the target distribution
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based Models
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Experiments: Language Models

Gibbs Results:

given me the chance but had abandoned me instead
given me the chance but had abandoned me instead
given me the chance but had abandoned me instead

Infilling Task: he had not , after all , [MASK] me the chance but [MASK] abandoned me [MASK] .

GWG Results:

given me the chance but had abandoned me instead
given me the chance but had abandoned me himself
offered me the chance but had abandoned me completely

DMALA Results:

shown me the chance but had abandoned me anyway
shown me the chance but not abandoned me immediately

given me the chance but had abandoned me completely | gave me the chance but had abandoned me anyway

given me the chance but had abandoned me anyway

given me the chance but he abandoned me instead

gives me the chance but also abandoned me perhaps
grants me the chance but really abandoned me entirely
offered me the chance but yet abandoned me instead

Unique n-grams (%) (1)

Model Methods | Self-BLEU () Self WT103 TBC Corpus BLEU (1)
n=2 n=3 n=2 n=3 n=2 n=3

Gibbs 86.84 1098 16.08 18.57 3221 2122 33.05 23.82

Bert-Base GWG 81.97 15.12 21.79 2276 37.59 2472 37.98 22.84
DULA 72.37 2333 3288 2774 45.85 30.02 46.75 21.82

DMALA 72.59 2326 3264 2799 4577 3032 46.49 21.85

Gibbs 88.78 9.31 13.74 17.78 30.50 2048 31.23 22.57

Bert-Large GWG 86.50 11.03 16.13 19.25 3320 2142 33.54 23.08
DULA 77.96 1797 26.64 23.69 4130 26.18 42.14 21.28

DMALA 76.27 1983 28.48 2538 4294 2787 43.77 21.73
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Constraints are everywhere in ML
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Safety ::CSSF: Logic rule
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Problem Setup

« Consider sampling with an equality constraint:
sample () on Gy = {x € R?: g(x) = 0}
where g(x) can be any differentiable function

1T(x)

g(x)=0




Variational View: Sampling as Optimization

« Transform the constrained sampling problem into a constrained
functional minimization problem

min KL(q || 7), s.t. ¢(g(z) =0)=1
qeP

« The velocity field vt that solves above problem is

o = argmax By, [(sx — 5q.) 70l — 5 Jolld, st w(o) Vg(e) = ~b(g(x)

where (z) = asign(z)|z|' 7

Sampling in Constrained Domains with Orthogonal-Space Variational Gradient Descent.
Zhang et al, NeurlPS 2022
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Orthogonal-Space Variational Gradient Descent

* Ut can be decomposed asvy = vy + VL

m(x)

g(x)=0

« vy(): drives the sampler towards the manifold following V4

« v makes the sampler explore the manifold following the density 7
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Convergence Analysis

Theorem (informal): O-Gradient converges to the target constrained
distribution with rate O(1/the number of iterations) under mild conditions
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Practical Algorithms: O-Langevin and O-SVGD

g(x)=0

(x)

O-Langevin
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Income Classification with Fairness Constraint

» Predict whether an individual's annual income is greater than
50, 000 unfavorably in terms of the gender
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(a) Training Curve (b) Testing Curve



Prior-Agnostic Bayesian Neural Networks

« To avoid a bad prior, sample from the posterior with the
constraint of a reasonably high data fitness

Test Error () ECE (]) AUROC (1)

SGLD 15.00 221 89.41

Tempered SGLD 4.73 0.83 97.63

O-Langevin 4.46 0.87 98.68
'Svap 611 093 = 9355




Sampling in many other scenarios

« Low precision
Low-Precision Stochastic Gradient Langevin Dynamics. ICML 2022
* Privacy

DP-Fast MH: Private, Fast, and Accurate Metropolis-Hastings for Large-
Scale Bayesian Inference. ICML 2023

« Data distribution shifts

Long-tailed Classification from a Bayesian-decision-theory Perspective.
AABI 2023
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Takeaways

Sampling is a ubiquitous task in ML, ranging from probabilistic
inference to generative modeling and representation learning

Sampling in discrete domains can be efficient using a discrete version
of Langevin dynamics

Sampling in constrained domains can be formulated as a functional
optimization solved using a special gradient flow

Thank you!
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