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Overviewp

Gibbs sampling
+ Convergence guarantees
– Not scale to large
datasets or models

Subsampling methods
+ Scale MCMC
– No theoretical guaran-
tees

Poisson-Gibbs – a novel minibatch Gibbs sampler
. Low computational cost
.Unbiased even without the M-H step
. Support both discrete and continuous distributions

We provide convergence rate guarantees
.Hyper-parameter selection guided by theoretical bounds

Gibbs Sampling on Graphical Modelsp
Consider factor graphs

π(x) =
1

Z
·
∏
φ∈Φ

exp (φ(x))

Sample from π by Gibbs sampling

Loop
Select a variable xi to sample at random
Compute the conditional distribution of xi based on all

factors φ that depend on xi
Resample variable xi from the conditional distribution

End Loop

Very expensive when the factor set is large!

Convergence Rate Guaranteesp
Issue: possibly intractable continuous conditional distributions

Solution: Double Chebyshev Approximation
.Get polynomial approximation of the PDF by using Chebyshev polyno-

mial approximation twice
.Generate a sample by inverse transform sampling

Convergence rate guarantees: higher spectral gap, higher convergence
rate
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. Recipe for minibatch size: λ = Θ(L2), then the constant becomes O(1)

Experimentsp
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Potts model
. Poisson-Gibbs is faster; validate our theory
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(a) Ground Truth (b) PGDA
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(c) Gibbs-rejection

Gaussian Mixture (106 factors)
. PGDA only uses 1800 factors on

average
. PGDA estimates the density ac-

curately while rejection sampling
fails

Poisson-Gibbsp
A new minibatch method based on auxiliary variables

......

turn on/off by

The joint distribution
.Keep the marginal distribution of x unchanged
.Allow a factor φ to contribute to the energy only when sφ > 0

π(x, s) ∝ exp
(∑

φ∈Φ

(
sφ log

(
1 + L

λMφ
φ(x)

)
+sφ log

(
λMφ

L

)
− log

(
sφ!
)))

An upper bound on the expected number of factors being used

E
[∣∣{φ ∈ A[i] | sφ > 0}

∣∣] ≤ λ + L

Future Workp
Apply Poisson-minibatching to other MCMC methods
.We applied Poisson-minibatching to Metropolis-Hasting

sampling—Poisson-MH
. Poisson-MH is unbiased
. Poisson-MH has a guaranteed convergence rate
.An experimental demonstration is in the paper

Interesting to combine Poisson-minibatching with more MCMC
methods


