

Poisson-Minibatching for Gibbs Sampling with Convergence Rate Guarantees

Overview

Gibbs sampling

- + Convergence guarantees Not scale to large datasets or models
- Subsampling methods + Scale MCMC - No theoretical guaran
 - tees

Poisson-Gibbs – a novel minibatch Gibbs sampler

- ▷ Low computational cost
- ▷ *Unbiased* even without the M-H step
- Support both discrete and *continuous* distributions

We provide convergence rate guarantees

> Hyper-parameter selection guided by theoretical bounds

Gibbs Sampling on Graphical Models

Consider factor graphs

$$\pi(x) = \frac{1}{Z} \cdot \prod_{\phi \in \Phi} \exp\left(\phi(x)\right)$$

Sample from π by Gibbs sampling

Loop

Select a variable x_i to sample at random

Compute the conditional distribution of x_i based on **all** *factors* ϕ that depend on x_i

Resample variable x_i from the conditional distribution **End Loop**

Very expensive when the factor set is large!

Future Work

Apply Poisson-minibatching to other MCMC methods

- ▷ We applied Poisson-minibatching to Metropolis-Hasting sampling—*Poisson-MH*
- ⊳ Poisson-MH is *unbiased*
- ▷ Poisson-MH has a *guaranteed convergence rate*
- ▷ An experimental demonstration is in the paper

Interesting to combine Poisson-minibatching with more MCMC methods

Poisson-Gibbs

The joint distribution

▷ Keep the marginal distribution of *x unchanged* \triangleright Allow a factor ϕ to contribute to the energy only when $s_{\phi} > 0$

```
\pi(x,s) \propto \mathrm{ex}
```

An *upper bound* on the expected number of factors being used

1arginal Error	0.8 - 0.6 - 0.4 -	
2	0.2	•
	0.0	1
or	0.8-	
al Erre	0.6	
argin	0.4	
Σ	0.2-	
	0.0	-

Potts model

Rugi Zhang and Christopher De Sa

$$\exp\left(\sum_{\phi\in\Phi}\left(s_{\phi}\log\left(1+\frac{L}{\lambda M_{\phi}}\phi(x)\right)+s_{\phi}\log\left(\frac{\lambda M_{\phi}}{L}\right)-\log\left(s_{\phi}!\right)\right)\right)$$

$$\mathbf{E}\left[\left|\{\phi \in A[i] \mid s_{\phi} > 0\}\right|\right] \le \lambda + L$$

Convergence Rate Guarantees Issue: possibly intractable continuous conditional distributions **Solution: Double Chebyshev Approximation** ▷ Get polynomial approximation of the PDF by using *Chebyshev polynomial approximation* twice ▷ Generate a sample by *inverse transform sampling* **Convergence rate guarantees: higher spectral gap, higher convergence** rate $\geq \alpha \cdot \exp\left(-\frac{1}{2}\right)$ $\bar{\gamma}$ spectral gap of gap of Gibbs Poisson-Gibbs

where

$$= \begin{cases} 1, \text{ exact sam} \\ \underline{(1 - 4\sqrt{F})} \\ \text{Chebyshev} \\ \text{approx. error} \end{cases}$$

lpha

▷ Poisson-Gibbs is faster; validate our theory

et sampling from conditionals (e.g. discrete) \sqrt{F} , continuous shev

 \triangleright Recipe for minibatch size: $\lambda = \Theta(L^2)$, then the constant becomes O(1)