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" Gibbs sampling ' Subsampling methods A new minibatch method based on auxiliary variables Issue: possibly intractable continuous conditional distributions
+ Convergence guarantees +Scale MCMC Solution: Double Chebyshev Approximation
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>Low computational cost / Convergence rate guarantees: higher spectral gap, higher convergence
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Loop
Select a variable z; to sample at random
Compute the conditional distribution of x; based on all
factors ¢ that depend on z;

Resample variable x; from the conditional distribution 3 3
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(a) Ground Truth
Apply Poisson-minibatching to other MCMC methods
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>We applied Poisson-minibatching to Metropolis-Hasting o o > ~O
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