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Question 1

Imagine that you travel to Seattle and want to know more about this city.
Where will you go?
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Imagine that you travel to Seattle and want to know more about this city.

Where will you go?

Answer: explore as many places as you can
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Why Bayesian Deep Learning
e Optimization methods use a single point estimate
o) e The loss, and posterior, do not strongly favour any one
POy .
: solution

e Parameters across different modes provide
complementary explanations of the data

e Combine these explanations for better accuracy and

Each mode corresponds to a different calibration

explanation (credit: [Saatchi and Wilson,
2017))
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Why ¢SG-MCMC

e Specifically designed to explore complex multimodal
posteriors

e Works for modern architectures at ImageNet scale

e Samples more efficiently even from unimodal
posteriors

e No significant overhead compared to standard SGD
training

Loss surface in deep learning

(credit: losslandscape.com)

Code: https://github.com/ruqizhang/csgmecme
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Learning on Bayesian Neural Networks

Goal: get the posterior distribution of the weights p(6|D)

e p(0|D) is complex and multimodal
e Different modes are corresponding to different representations

Solution: Markov chain Monte Carlo (MCMC)

+ Asymptotically unbiased

+ Gold standard on small neural networks [Neal, 1996]

— High computational cost
— Slow mixing

How to make MCMC efficiently explore a highly multimodal parameter space?
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SG-MCMC
e Stochastic Gradient Markov Chain Monte Carlo (SG-MCMC): M

use stochastic gradients in Langevin dynamics to reduce cost of each iteration
Orr1 =0k — akVU(ﬁ) + V2ake, where e ~ N(0,1)

[Welling and Teh, 2011]

e Previous work: introduce momentum variables [Chen et al.,2014] and preconditioners [Li
et al.,2016]

( Slow mixing: not efficient to explore multimodal distributions of DNNs )




How do you efficiently explore the city? By car or on foot?




Problem Analysis

-
Stepsize is the key!

e SG-MCMC requires a decaying stepsize to control error A

e A small stepsize leads to slow mixing



Problem Analysis

-
Stepsize is the key!

e SG-MCMC requires a decaying stepsize to control error A

e A small stepsize leads to slow mixing

4 )
Stepsize controls SG-MCMC's behavior in two ways:

e magnitude to drift towards high density regions
e the level of injecting noise

Orr1 = Ok — 2, VU() + /20 e, where e ~ N(0, 1)

A small stepsize reduces both abilities
\_ J




Our solution

e Cyclical stepsize schedule
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Our solution

e Cyclical stepsize schedule
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e cSG-MCMC operates in two stages: (i) Exploration: encourage the sampler to explore the
parameter space with large stepsizes (ii) Sampling: characterize the fine-scale local density with
small stepsizes
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Cyclical SG-MC Details

Introduce a system temperature T to control the sampler’s behaviour

e Exploration: use T = 0 to converge quickly

e Sampling: use 0 < T < 1 to improve performance
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Non-Asymptotic Analysis

e We provide analysis of weak convergence in terms of bias and MSE, and convergence
under the Wasserstein distance
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Non-Asymptotic Analysis

e We provide analysis of weak convergence in terms of bias and MSE, and convergence
under the Wasserstein distance

e Takeaway: cSG-MCMC has the same order of dependency on K as SG-MCMC, but can
have an overall faster convergence rate due to a better trade-off between bias and variance
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Mixture of 25 Gaussians

LA A R B 0 . "
LA A R B 0 .
LA A R B . o »
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LA A R B .
(a) Target (b) SGLD (c) cSGLD (ours)

e Whereas SGLD gets trapped in some local modes, cSGLD is able to find and characterize
all modes

11



CIFAR-10 CIFAR-100

SGD 5.29+0.15 23.61+0.09
SGDM 5.17+0.09 22.98+0.27
Snapshot-SGD 4.46+0.04 20.83+0.01
Snapshot-SGDM | 4.3940.01 20.81+0.10
SGLD 5.20+0.06  23.23+0.01
cSGLD (ours) 4.294+0.06  20.55+0.06
SGHMC 4.934+0.1 22.60+0.17
c¢SGHMC (ours) | 4.27+0.03 20.50+0.11

Table 1: Comparison of test error (%).

cSG-MCMC outperforms SG-MCMC and optimization methods.

Bayesian Neural Networks
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weight space and prediction space
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e Samples from cSG-MCMC are diverse in weight space and prediction space
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NLL| Topl{ Top5 1

SGDM 0.9595 76.046  92.776
Snapshot-SGDM | 0.8941  77.142  93.344
SGHMC 0.9308 76.274  92.994

cSGHMC 0.8882 77.114  93.524

e cSG-MCMC gives the lowest testing NLL
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Uncertainty Estimate
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e Train on MNIST dataset and test on notMNIST dataset
e cSG-MCMC gives the best uncertainty estimate

15



e Bayesian neural networks involve multimodal posteriors corresponding to different

representations
e We propose cSG-MCMC to efficiently explore these complex multimodal distributions

c¢SG-MCMC is simple to implement and no computational overhead

e We prove non-asymptotic convergence of our method.

We provide promising empirical results, including experiments on ImageNet

Code: https://github.com/ruqizhang/csgmcmc

Thank you!
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