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Question 1

Imagine that you travel to Seattle and want to know more about this city.

Where will you go?
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Why Bayesian Deep Learning

Each mode corresponds to a different

explanation (credit: [Saatchi and Wilson,

2017])

• Optimization methods use a single point estimate

• The loss, and posterior, do not strongly favour any one

solution

• Parameters across different modes provide

complementary explanations of the data

• Combine these explanations for better accuracy and

calibration
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Why cSG-MCMC

• Specifically designed to explore complex multimodal

posteriors

• Works for modern architectures at ImageNet scale

• Samples more efficiently even from unimodal

posteriors

• No significant overhead compared to standard SGD

training

Loss surface in deep learning

(credit: losslandscape.com)

Code: https://github.com/ruqizhang/csgmcmc
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Learning on Bayesian Neural Networks

Goal: get the posterior distribution of the weights p(θ|D)

• p(θ|D) is complex and multimodal

• Different modes are corresponding to different representations

Solution: Markov chain Monte Carlo (MCMC)

+ Asymptotically unbiased

+ Gold standard on small neural networks [Neal, 1996]

– High computational cost

– Slow mixing

How to make MCMC efficiently explore a highly multimodal parameter space?
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SG-MCMC

• Stochastic Gradient Markov Chain Monte Carlo (SG-MCMC):

use stochastic gradients in Langevin dynamics to reduce cost of each iteration

θk+1 = θk − αk∇Ũ(θ) +
√

2αkε, where ε ∼ N (0, I )

[Welling and Teh, 2011]

• Previous work: introduce momentum variables [Chen et al.,2014] and preconditioners [Li

et al.,2016]

Slow mixing: not efficient to explore multimodal distributions of DNNs
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Question 2

How do you efficiently explore the city? By car or on foot?
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Problem Analysis

Stepsize is the key!

• SG-MCMC requires a decaying stepsize to control error

• A small stepsize leads to slow mixing

Stepsize controls SG-MCMC’s behavior in two ways:

• magnitude to drift towards high density regions

• the level of injecting noise

θk+1 = θk − αk∇Ũ(θ) +
√

2αkε, where ε ∼ N (0, I )

A small stepsize reduces both abilities
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Our solution

• Cyclical stepsize schedule
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• cSG-MCMC operates in two stages: (i) Exploration: encourage the sampler to explore the

parameter space with large stepsizes (ii) Sampling: characterize the fine-scale local density with

small stepsizes
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Cyclical SG-MCMC Details

Introduce a system temperature T to control the sampler’s behaviour

• Exploration: use T = 0 to converge quickly

• Sampling: use 0 < T < 1 to improve performance
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Non-Asymptotic Analysis

• We provide analysis of weak convergence in terms of bias and MSE, and convergence

under the Wasserstein distance

• Takeaway: cSG-MCMC has the same order of dependency on K as SG-MCMC, but can

have an overall faster convergence rate due to a better trade-off between bias and variance
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Mixture of 25 Gaussians

(a) Target (b) SGLD (c) cSGLD (ours)

• Whereas SGLD gets trapped in some local modes, cSGLD is able to find and characterize

all modes
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Bayesian Neural Networks

CIFAR-10 CIFAR-100

SGD 5.29±0.15 23.61±0.09

SGDM 5.17±0.09 22.98±0.27

Snapshot-SGD 4.46±0.04 20.83±0.01

Snapshot-SGDM 4.39±0.01 20.81±0.10

SGLD 5.20±0.06 23.23±0.01

cSGLD (ours) 4.29±0.06 20.55±0.06

SGHMC 4.93±0.1 22.60±0.17

cSGHMC (ours) 4.27±0.03 20.50±0.11

Table 1: Comparison of test error (%).

cSG-MCMC outperforms SG-MCMC and optimization methods.
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Visualization in weight space and prediction space

(a) Weight space (MDS) (b) Prediction space (interpolation)

• Samples from cSG-MCMC are diverse in weight space and prediction space
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ImageNet

NLL ↓ Top1 ↑ Top5 ↑
SGDM 0.9595 76.046 92.776

Snapshot-SGDM 0.8941 77.142 93.344

SGHMC 0.9308 76.274 92.994

cSGHMC 0.8882 77.114 93.524

• cSG-MCMC gives the lowest testing NLL
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Uncertainty Estimate

• Train on MNIST dataset and test on notMNIST dataset

• cSG-MCMC gives the best uncertainty estimate
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Summary

• Bayesian neural networks involve multimodal posteriors corresponding to different

representations

• We propose cSG-MCMC to efficiently explore these complex multimodal distributions

• cSG-MCMC is simple to implement and no computational overhead

• We prove non-asymptotic convergence of our method.

• We provide promising empirical results, including experiments on ImageNet

Code: https://github.com/ruqizhang/csgmcmc

Thank you!
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